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Introduction

• The number of applications of computerized adaptive testing (CAT) has increased 
dramatically over the past decade. For example,

- K-12 summative assessment programs
- Diagnostic, formative, on-demand assessments
- Patient-reported health outcomes measurement arena

• One of the consequences is an increased pressure to replenish the item pool 
more frequently and develop and calibrate new items more efficiently.

• More efficient item pool replenishment may necessitate smaller calibration 
sample sizes. With smaller sample sizes, calibration error of item parameters is 
likely to be substantial; consequently, the uncertainty of ability estimation is 
increased.
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Introduction

• Incorporating the uncertainty about the ability estimation into item parameter 
calibration calls for a Bayesian solution.

• A Bayesian approach based on an optimized Markov chain Monte Carlo (MCMC) 
algorithm for dichotomous items was introduced in van der Linden and Ren 
(2015).

- Rapid real-time mixing of the Markov chain and simple posterior calculations for 
dichotomous items using the 3PL model

- Optimal design for field test item assignment

• The similar idea has been implemented in Bayesian CAT with dichotomous items 
(van der Linden & Ren, 2020) and polytomous items (Ren, Choi, & van der Linden, 
2020).

- The uncertainty about item parameters for the ability estimation.
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Introduction

• Interest in CAT with polytomous items has grown considerably both in 
educational testing and health-outcomes measurement fields.

• Unlike dichotomous items, the information function of polytomous items tends 
to span a wider ability/trait range and can be multi-modal.

- May have effect on the calibration sample size, effectiveness of optimal design, etc.

• It is worth evaluating the implementation of Bayesian optimal design for 
polytomous items and evaluate its behavior and performance.
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Models and Methods

• Item Response Theory (IRT) Models
• Fisher’s Information for Item Parameters
• Assignment of Field Test Items
• Update of Item Parameters
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Item Response Theory Models

• Generalized Partial Credit Model (GPCM)
The GPCM defines the probability of receiving a score on an item in category 𝑐 =
0,1, … ,𝑚 − 1 as

𝑃! 𝜃 =
exp ∑"#$! 𝑍"(𝜃)

∑!#$%&' exp ∑"#$! 𝑍"(𝜃)

with 
𝑍" = 𝑎(𝜃 − 𝑏")

where 𝑚 is the number of response categories, 𝜃 is the examinee ability 
parameter, 𝑎 is the discrimination parameter, and 𝑏s are step difficulty parameters 
and 𝑏$ = 0.
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Item Response Theory Models

• Graded Responses Model (GRM)
The GRM defines the probability of selecting the ordered response categories 𝑐 of 
an item as

𝑃! 𝜃 = 𝑃!∗ 𝜃 − 𝑃!)'∗ (𝜃)

and 𝑃!∗ 𝜃 is defined as

𝑃!∗ 𝜃 = 4
1 𝑐 = 0

⁄1 1 + exp(−𝑎 𝜃 − 𝑏! ) 0 < 𝑐 < 𝑚
0 𝑐 = 𝑚

where 𝑏! is category-boundary parameter.
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Item Response Theory Models

• The two models are equivalent for 𝑚 = 2; however, their item parameters are 
not directly comparable for 𝑚 > 2.

• GPCM has been used to score responses to items in cognitive tests.

• GRM has been favored for fitting rating scale responses (e.g. Likert-type data).

• For practical applications, the choice between the two models has been showed 
to be rather inconsequential.
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Fisher’s Information for Item Parameters

For a polytomous item with 𝑚 categories, the information matrix is given as

𝐼 𝜂; 𝜃 =
𝐼** ⋯ 𝐼*+!"#
⋮ ⋱ ⋮

𝐼+!"#* ⋯ 𝐼+!"#+!"#

where 𝜂 = 𝑎, 𝑏', … , 𝑏%&' , and each element of the matrix is defined as

𝐼,$,% = 𝐸 −
𝜕-

𝜕𝜂.𝜕𝜂/
logLikelihood
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Fisher’s Information for Item Parameters

For GPCM, the detailed formula can be written as

𝐼** = J
!#$

%&'

𝑃! ⋅ 𝑇!- − J
!#$

%&'

𝑇! ⋅ 𝑃!

-

where 𝑇! = ∑"#$! (𝜃 − 𝑏"). For 𝑘 = 1,… ,𝑚 − 1,

𝐼*+& = 𝑎 J
!#0

%&'

𝑃! ⋅ J
!#$

0&'

𝑃! ⋅ 𝑇! − J
!#$

0&'

𝑃! ⋅ J
!#0

%&'

𝑃! ⋅ 𝑇!
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Fisher’s Information for Item Parameters

For 𝑘 = 1,… ,𝑚 − 1,

𝐼+&+& = 𝑎- J
!#$

0&'

𝑃! ⋅ J
!#0

%&'

𝑃!

For 𝑘 < 𝑙,

𝐼+&+' = 𝑎- J
!#$

0&'

𝑃! ⋅ J
!#1

%&'

𝑃!

and 
𝐼+'+& = 𝐼+&+'
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Fisher’s Information for Item Parameters

• The formulas are for one item and one test taker. For multiple items and test 
takers, the information equals the sum across all items and all test takers.

• For GRM, there are similar formulas which also have clean and closed forms.
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Fisher’s Information for Item Parameters

The Bayesian version of the Information matrix is defined as

𝐼2 = O𝐼 𝜂; 𝜃 ⋅ 𝑓 𝜂 ⋅ 𝑓 𝜃 𝑑𝜂𝑑𝜃

where the 𝑓(𝜂) and 𝑓(𝜃) are posterior distribution of 𝜂 and 𝜃. It can be calculated 
using the draws from the posterior distribution of 𝜃𝑠 and the draws from the 
updated posterior distribution of 𝜂 as

𝐼2 ≈ 𝑆𝑇 &'J
3#'

4

J
5#'

6

𝐼 𝜂(5); 𝜃(3)
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Assignment of Field Test Items

Suppose the field test items have already been updated (b-1) times, and another 
test taker 𝑗 is ready to take one field test item, then one of the available field test 
items is selected according to the following optimality criteria.
• D-optimality

𝐷 = det 𝐼(+&') + 𝐼/ − det 𝐼(+&')

• A-optimality

𝐴 = trace 𝐼(+&') &' − 𝐼(+&') + 𝐼/
&'

• T-optimality
𝑇 = trace 𝐼(+&') + 𝐼/ − trace 𝐼(+&')
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Assignment of Field Test Items

• E-optimality
𝐸 = maxEigen 𝐼(+&') &' −maxEigen 𝐼(+&') + 𝐼/

&'

• W-optimality

𝑊 = det 𝐼 +&' +
&'

− det 𝐼 +&' + 𝐼/ +
&'

where the subscript “b” means only focus on parameter 𝑏s.

• Random
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Item Parameter Update

After a batch of responses for one field test item is collected, the field test item 
parameters are updated once. The similar algorithm used in van der Linden & Ren 
(2015) was used. It is a modified Gibbs algorithm and includes two main steps:

1. Sampling the posterior distributions of 𝜃s.
- Resampling the draws saved after the CAT with operational items.

2. Sampling the conditional posterior distribution of item parameters
- Metropolis-Hastings step to generate one sample of item parameters.

A vector of draws sampled from the stationary part of the Markov chain for item 
parameters is saved for future field test item assignment and parameter update.
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Simulation Study

Adaptive tests were simulated from a pool of 150 operational items and 50 field-
test items. The adaptive test was organized as follow:
• Test length was 15.
• Maximum information criterion was used for item selection.
• EAP was used for ability estimation.
• The simulee’s true ability was generated from standard normal distribution.
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Simulation Study

• Field-test items were assigned either after the 5th or 15th operational item.
• The draws from the posterior distribution of 𝜃 after the 5th / 15th operational 

item were used for the field-test item selection.
• The field-test parameters were updated after batches of 20, 50, and 100 

responses, using the draws of 𝜃 at the end of the test.
• A field-test item was retired after the collection of 500 or 1000 responses. The 

calibrated item was then replaced with a new field-test item.
• The whole simulation was stopped when 50 field-test items had finished their 

calibration.
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Simulation Study

Observe that
• The field-test pool always has 50 active field-test items.
• Thus, there always were 50 items competing with each other to meet the 

optimality criterion.
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Item Position 5th 15th

Batch Size 20 50 100 20 50 100

𝑎

D -0.145 -0.164 -0.159 -0.215 -0.168 -0.171
A -0.173 -0.157 -0.166 -0.137 -0.161 -0.149
T -0.160 -0.199 -0.191 -0.158 -0.186 -0.208
E -0.143 -0.115 -0.158 -0.147 -0.138 -0.162
W -0.148 -0.123 -0.140 -0.153 -0.136 -0.146
R -0.100 -0.147 -0.140 -0.120 -0.143 -0.128

𝑏

D -0.057 0.009 0.011 -0.039 -0.004 -0.005
A -0.127 -0.046 -0.072 -0.118 -0.013 0.001
T -0.047 -0.318 -0.100 -0.088 -0.419 -0.092
E 0.208 -0.008 -0.046 -0.066 -0.070 -0.076
W -0.117 -0.013 -0.027 -0.254 -0.044 -0.013
R -0.065 -0.062 -0.032 -0.021 -0.029 -0.045

Table 1: Average Bias of Field-Test Parameters (Calibration Size: 1000)
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Item Position 5th 15th

Batch Size 20 50 100 20 50 100

𝑎

D -0.129 -0.159 -0.106 -0.075 -0.130 -0.115
A -0.153 -0.167 -0.170 -0.136 -0.151 -0.143
T -0.194 -0.203 -0.203 -0.149 -0.187 -0.207
E -0.164 -0.181 -0.161 -0.147 -0.186 -0.172
W -0.147 -0.145 -0.137 -0.116 -0.164 -0.162
R -0.071 -0.109 -0.123 -0.130 -0.128 -0.119

𝑏

D 0.020 0.007 -0.010 -0.019 -0.018 -0.019
A -0.052 -0.081 -0.026 -0.055 -0.041 -0.032
T -0.144 -0.019 -0.068 -0.010 -0.087 -0.026
E -0.072 -0.063 -0.042 -0.067 -0.107 -0.044
W 0.040 -0.097 -0.026 0.876 -0.122 -0.063
R -0.066 -0.052 -0.010 -0.052 -0.033 -0.039
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Table 1: Average Bias of Field-Test Parameters (Calibration Size: 500)



Item Position 5th 15th

Batch Size 20 50 100 20 50 100

𝑎

D 0.232 0.224 0.193 0.260 0.226 0.194
A 0.229 0.195 0.187 0.204 0.197 0.185
T 0.231 0.238 0.231 0.226 0.228 0.246
E 0.204 0.168 0.186 0.213 0.180 0.191
W 0.204 0.180 0.167 0.211 0.181 0.189
R 0.217 0.174 0.169 0.222 0.176 0.171

𝑏

D 0.594 0.561 0.258 0.571 0.384 0.303
A 1.075 0.390 0.433 0.872 0.715 0.327
T 0.805 2.467 0.551 1.558 3.909 0.668
E 2.858 0.520 0.405 0.947 0.474 0.394
W 1.263 0.730 0.329 0.971 0.612 0.568
R 0.838 0.439 0.248 0.867 0.427 0.242

Table 2: Average RMSE of Field-Test Parameters (Calibration Size: 1000)
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Item Position 5th 15th

Batch Size 20 50 100 20 50 100

𝑎

D 0.216 0.208 0.148 0.233 0.177 0.152
A 0.228 0.207 0.203 0.219 0.189 0.183
T 0.273 0.243 0.241 0.232 0.237 0.263
E 0.219 0.216 0.188 0.213 0.214 0.210
W 0.221 0.184 0.173 0.190 0.195 0.198
R 0.163 0.162 0.166 0.222 0.172 0.153

𝑏

D 0.490 0.283 0.279 0.448 0.312 0.324
A 1.126 0.591 0.336 0.847 0.529 0.324
T 1.192 0.898 0.541 1.121 0.747 0.534
E 1.162 0.662 0.387 1.114 0.619 0.343
W 1.295 0.473 0.318 10.549 0.665 0.380
R 0.815 0.404 0.229 0.705 0.398 0.274
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Table 2: Average RMSE of Field-Test Parameters (Calibration Size: 500)



Item Position 5th 15th

Batch Size 20 50 100 20 50 100

𝑎

D 0.247 0.156 0.111 0.232 0.154 0.110
A 0.197 0.136 0.097 0.198 0.135 0.099
T 0.207 0.137 0.111 0.204 0.141 0.111
E 0.201 0.143 0.100 0.196 0.137 0.097
W 0.197 0.149 0.107 0.197 0.147 0.108
R 0.237 0.151 0.108 0.233 0.150 0.108

𝑏

D 0.547 0.374 0.253 0.577 0.364 0.262
A 0.806 0.432 0.321 0.787 0.485 0.305
T 0.836 0.703 0.461 0.938 0.770 0.436
E 0.941 0.445 0.319 0.797 0.442 0.322
W 0.930 0.492 0.312 0.852 0.489 0.343
R 0.664 0.387 0.261 0.682 0.383 0.254
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Table 3: Average Posterior SD of Field-Test Parameters (Calibration Size: 1000)



Item Position 5th 15th

Batch Size 20 50 100 20 50 100

𝑎

D 0.253 0.156 0.117 0.263 0.160 0.115
A 0.200 0.137 0.103 0.205 0.136 0.104
T 0.196 0.152 0.113 0.218 0.146 0.115
E 0.200 0.131 0.100 0.198 0.130 0.103
W 0.198 0.145 0.109 0.212 0.137 0.107
R 0.235 0.154 0.112 0.228 0.151 0.112

𝑏

D 0.556 0.356 0.249 0.534 0.352 0.257
A 0.826 0.459 0.317 0.758 0.461 0.315
T 0.857 0.672 0.439 0.866 0.613 0.439
E 0.875 0.500 0.318 0.821 0.489 0.326
W 0.935 0.464 0.323 1.392 0.496 0.325
R 0.661 0.386 0.255 0.646 0.379 0.256
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Table 3: Average Posterior SD of Field-Test Parameters (Calibration Size: 500)
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Discussion

• Large batch size helped reducing the average RMSE and posterior SD of 
parameter 𝑏.

• Reducing sample size from 1000 to 500 did not have significant impact on the 
calibration results.

• Under the Bayesian framework, assigning the field test items at early stage of 
operational CAT did not have significant impact on the calibration results 
compared to assign the field test item at the end of operational CAT.

- A lack of effect most likely due to the fact that the posterior sample of the ability parameters 
at the end of the test were used for the calibration.

• The negative bias of a parameter calibration result may indicate that the standard 
normal distribution as true ability/trait distribution did not provide enough 
discrimination information for polytomous items given the width of their 
information functions. 

27



Discussion

• Among the criteria, D-optimality and Random had similar performance on the 
calibration results of b parameter in terms of RMSE and average posterior SD; 

• As demonstrated by the figure, optimal design resulted in early calibration of 
some of the more informative items while with random assignment we had to 
wait for the first calibrated item until the end of the study.

• Optimal design can be further embedded in the shadow-test approach to provide 
overall control across different aspects of a test.
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Discussion

• This study showed the feasibility of the implementation for online item 
calibration with polytomous items and the proposed Bayesian framework. 
• Computation time for item selection (field test item assignment) is low enough for 

application in real-world adaptive testing.

• Computation time for item parameter update is about 2~3 second.
• The configuration in this study was very conservative. The performance can be tuned if real-

time online update is desired.

• Periodical monitoring is recommended for the cases of non-convergence or 
extreme values.
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